

Institute for IIT-JAM I CSIR-NET/JRF I U-SET I GATE I JEST I TIFR I BARC

Dedicated to excellence...

JEST ATOMIC & MOLECULAR PHYSICS

PREVIOUS YEAR QUESTIONS WITH ANSWER (CHAPTER-WISE)

- ATOMIC
- MOLECULAR
- LASER PHYSICS

"We Believe In Quality Education"

ATOMIC

1. The binding energy of the hydrogen atom (electron bound to proton) is 13.6 eV. The binding energy of positronium (electron bound to positron) is.

[JEST 2012]

(a) 13.6 / 2 eV	(b) 13.6 / 1810 eV
(c) $13.6 \times 1810 \text{ eV}$	(d) $13.6 \times 2 \text{ eV}$

2. A sodium atom in the first excited 3P states has a lifetime of 16ns for decaying to the ground 3S state. The wavelength of the emitted photon is 589 nm. The corresponding line width of the transition (in frequency units) is about.

[JEST 2013]

(a) 1.7×10^{6} Hz	(b) 1×10^{7} Hz
(c) 6.3×10^7 Hz	(a) 5×10^{14} Hz

3. If a proton were ten times, the ground state energy of the electron in a hydrogen [JEST 2013]

(a) Less (b) More

(c) The same

(d) Less, more or equal depending on the electron mass

4. The value of elastic constant for copper is about 100 Nm⁻¹ and the atomic spacing is 0.256nm. What is the amplitude of the vibration of the Cu atoms at 300 K as a percentage of the equilibrium separation? [JEST 2014] (a) 4.55 % (b) 3.55 % (c) 2.55 % (d) 1.55 %

5. Which functional form of potential best describes the interaction between a neutral atom and an ion at large distances (i.e. much larger than their diameters).

[JEST 2014]

(a) $V \propto -1/r^2$ (b) $V \propto -1/r$ (c) $V \propto -e^{-r/a}/r$ (d) $V \propto -1/r^3$

6. If a proton were ten times lighter, then the ground state energy of the electron in a hydrogen atom would have been. [JEST 2014]
(a) Less (b) More

- (a) Less(c) The same
- (d) Depends on the electron mass
- 7. If hydrogen atom is bombarded by energetic electrons, it will emit. [JEST 2014] (a) $K_{\alpha} X$ - rays
 (b) β -rays
 (c) N = 4
 - (c) Neutrons

(d) none of the above

			Ca	areer Spectra				
8.	A hydrogen atom in its ground state is collided with an electron of kinetic energy 13.377 eV. The maximum factor by which the radius of the atom would increase is.							
	(a) 7	(b) 8	(c) 49	(d) 64	- 1			
9.	The energy di coupling split splitting of the (a) 2eV	fference between the s the 3 <i>p</i> level, resulting e 3p level is approxim (b) 0.2eV	3 <i>p</i> and 3 <i>s</i> levels in ng in two emission nately, (c) 0.02eV	n <i>Na</i> is 2.1 <i>eV</i> . Spin-orb n lines differing by 6Å. T [JEST 2 (d) 2meV	it he 015]			
10.	Which of the following excited states of a hydrogen atom has the highest							
	lifetime? (a) 2p	(b) 2s	(c) 3s	(d) 3p	2015]			
11.	Which of the carbon atom i (a) ${}^{3}P < {}^{1}D <$ (c) ${}^{3}P < {}^{1}F < {}^{1}$	following statements n the ground state ele ¹ S S	is true for the energy configuration (b) ${}^{3}P < {}^{1}S < (d) {}^{3}P < {}^{1}F < (d) {}^{3}P < {}^{1}P < (d) {}^{3}P < {$	rgies of the terms of the tion 1s ² 2s ² 2p ² ? [JEST 2 ¹ D	2015]			
12.	If the Rydberg Rydberg cons electronic to r (a) $\frac{(1-\alpha)}{\alpha}$	g constant of an atom tant corresponding to nuclear mass of the at (b) $\frac{(\alpha-1)}{\alpha}$	of finite nuclear is an infinite nuclear is. (c) $(1 - \alpha)$	mass is αR_{∞} , where R_{∞} to ar mass, the ratio of the [JEST 2 (d) $\frac{1}{\alpha}$	he 016]			
13.	What is the di system of two the correspon	fference between the electrons whose Har ding spin angular mo	maximum and the miltonian is $H = J$ mentum operators	e minimum eigenvalues of \vec{S}_1 , \vec{S}_2 , where \vec{S}_1 and \vec{S}_2 a of the two electrons? [JEST 2]	of a re 018]			
	(a) $\frac{J}{4}$	(b) $\frac{J}{2}$	(c) $\frac{3J}{4}$	(d) J	1			
14.	Consider a hy What will be 5? (a) 1s ⁴ , 2s ¹	pothetical world in w the electronic configu (b) 1s ⁴ , 2s ² , 2p ¹	which the electron uration for an elem (c) 1s ⁵	has spin 3/2 instead of 1/2 nent with atomic number [JEST 2 (b) 1s ³ , 2s ¹ , 2p ¹	2. <i>Z</i> = 2019]			

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in

MOLECULAR

- 15. The H_2 molecule has a reduced mass $M = 8.35 \times 10^{-28} kg$ and an equilibrium internuclear distance $M = 0.742 \times 10^{-10} m$. The rotational energy in terms of the rotational quantum number J is . [JEST 2016]
 - (a) $E_{rot}(J) = 7J(J-1) \text{ meV}$
 - (c) $E_{rot}(J) = 7J(J+1) \text{ meV}$
- (b) $E_{rot} (J) = \frac{5}{2} J (J+1) meV$ (d) $E_{rot} (J) = \frac{5}{2} J (J-1) meV$

<u>ANSWER KEY</u>											
1. 7. 13.	A D D	2. 8. 14.	C C A	3. 9. 15.	B D C	4. 10.	B B	5. 11.	A A	6. 12.	B A
14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in Page 4											